FANDOM


Jupiter

Jupiter

Jupiter (pronounced /ˈdʒuːpɨtɚ/ (help·info)) is the fifth planet from the Sun and the largest planet within the Solar System. It is two and a half times as massive as all of the other planets in our Solar System combined. Jupiter is classified as a gas giant, along with Saturn, Uranus and Neptune. Together, these four planets are sometimes referred to as the Jovian planets, where Jovian is the adjectival form of Jupiter.

The planet was known by astronomers of ancient times and was associated with the mythology and religious beliefs of many cultures. The Romans named the planet after the Roman god Jupiter. When viewed from Earth, Jupiter can reach an apparent magnitude of −2.8, making it the third brightest object in the night sky after the Moon and Venus. (However, at certain points in its orbit, Mars can briefly exceed Jupiter's brightness.)

The planet Jupiter is primarily composed of hydrogen with a small proportion of helium; it may also have a rocky core of heavier elements under high pressure. Because of its rapid rotation, Jupiter's shape is that of an oblate spheroid (it possesses a slight but noticeable bulge around the equator). The outer atmosphere is visibly segregated into several bands at different latitudes, resulting in turbulence and storms along their interacting boundaries. A prominent result is the Great Red Spot, a giant storm that is known to have existed since at least the 17th century. Surrounding the planet is a faint planetary ring system and a powerful magnetosphere, thus making high radiation levels. There are also at least 63 moons, including the four large moons called the Galilean moons that were first discovered by Galileo Galilei in 1610. Ganymede, the largest of these moons, has a diameter greater than that of the planet Mercury.

Jupiter has been explored on several occasions by robotic spacecraft, most notably during the early Pioneer and Voyager flyby missions and later by the Galileo orbiter. The latest probe to visit Jupiter was the Pluto-bound New Horizons spacecraft in late February 2007. The probe used the Jupiter's gravitational field to increase its speed and adjust its trajectory toward Pluto, thereby saving years of travel. Future targets for exploration include the possible ice-covered liquid ocean on the Jovian moon Europa.

MoonsEdit

Main article: Moons of Jupiter Jupiter has 63 named natural satellites. Of these, 47 are less than 10 kilometers in diameter and have only been discovered since 1975. The four largest moons, known as the "Galilean moons", are Io, Europa, Ganymede and Callisto.

Galilean MoonsEdit

Jupiter's 4 Galilean moons, in a composite image comparing their szdizes and the sjjj ize of Jupiter (Great Red Spot visible). From the top they are: Callisto, Ganymede, Europa and Io. Galilean moons Main article: Galilean moons The orbits of Io, Europa , and Ganymede , some of the largest satellites in the Solar System, form a pattern known as a Laplace resonance; for every four orbits that Io makes around Jupiter, Europa makes exactly two orbits and Ganymede makes exactly one. This resonance causes the gravitational effects of the three large moons to distort their orbits into elliptical shapes, since each moon receives an extra tug from its neighbors at the same point in every orbit it makes. The tidal force from Jupiter, on the other hand, works to circularize their orbits.

The eccentricity of their orbits causes regular flexing of the three moons' shapes, with Jupiter's gravity stretching them out as they approach it and allowing them to spring back to more spherical shapes as they swing away. This tidal flexing heats the moons' interiors via friction. This is seen most dramatically in the extraordinary volcanic activity of innermost Io (which is subject to the strongest tidal forces), and to a lesser degree in the geological youth of Europa's surface (indicating recent resurfacing of the moon's exterior).

Possibility Of LifeEdit

In 1953, the Miller-Urey experiment demonstrated that a combination of lightning and the chemical compounds that existed in the atmosphere of a primordial Earth could form organic compounds (including amino acids) that could serve as the building blocks of life. The simulated atmosphere included water, methane, ammonia and molecular hydrogen; all molecules still found in the atmosphere of Jupiter. However, the atmosphere of Jupiter has a strong vertical air circulation, which would carry these compounds down into the lower regions. The higher temperatures within the interior of the atmosphere breaks down these chemicals, which would hinder the formation of Earth-like life.

It is considered highly unlikely that there is any Earth-like life on Jupiter, as there is only a small amount of water in the atmosphere and any possible solid surface deep within Jupiter would be under extraordinary pressures. However, in 1976, before the Voyager missions, it was hypothesized that ammonia- or water-based life, such as the so-called atmospheric beasts, could evolve in Jupiter's upper atmosphere. This hypothesis is based on the ecology of terrestrial seas which have simple photosynthetic plankton at the top level, fish at lower levels feeding on these creatures, and marine predators which hunt the fish.

The Great Red Spot Edit

For more information, go to Great Red Spot. It's visible in almost every picture of Jupiter.

Trivia Edit

  • Jupiter is a lot larger than earth.

Ad blocker interference detected!


Wikia is a free-to-use site that makes money from advertising. We have a modified experience for viewers using ad blockers

Wikia is not accessible if you’ve made further modifications. Remove the custom ad blocker rule(s) and the page will load as expected.